[수학] 배수판정법 이야기 - 약수와 배수

By @ryanhan2/21/2018kr

안녕하세요! ryanhan입니다.
오늘은 지난번에 소개한 유클리드 호제법에 이어서
배수판정법이라고 불리는 방법을 소개하려고 합니다.
9의 배수판정법이란
어떤 수가 주어졌을 때, 그 수가 9의 배수인지 판단하는 방법입니다.
7877.png

구구단을 외자! 구구단을 외자!

약수와 배수의 개념은 구구단을 배우면서 자연스럽게 익히게 됩니다.
그러면서 배수판정법에 대해서 자연스럽게 깨닫기도 하는데요.

  1. 2단
    2단에서는 일의 자리가 0 2 4 6 8로만 이루어진다는 것을 확인한 적이 있으실 겁니다.
    여기에서 자연스럽게 일의 자리가 짝수이면, 그 수가 2의 배수라는 것이 이해가 됩니다.
  2. 5단
    5단은 더 쉽습니다.
    일의 자리가 0또는 5로만 이루어져 있다는 것을 확인한 적이 있으실 겁니다.
    자연스럽게 일의 자리가 0또는 5이면, 그 수가 5의 배수라는 것을 알 수 있습니다.
  3. 9단
    9단 또한 특이한데요.
    9x1=9
    9x2=18
    9x3=27
    9x4=36
    9x5=45
    9x6=54
    9x7=63
    9x8=72
    9x9=81
    18과81 , 27과 72, 등등...
    일의 자리와 십의 자리가 뒤바뀐다는 것을 보신적이 있을 겁니다.
    초등학생 때, 9단을 외울 때
    십의 자리는 1씩 증가하고, 일의 자리는 1씩 감소한다는 사실을 깨닫기도 하죠.
    거기에서 한 걸음 더 나아가서 생각한다면,
    자리수의 합이 일정하게 9로 유지되어야 한다는 것을 생각할 수 있습니다.
    십의 자리는 1씩 커지고, 일의 자리는 1씩 감소해야 하니까요.
    9877.png

자릿수의 합에 집중하여

9단에서의 고찰에서
9의 배수는 자릿수의 합이 9로 일정하게 유지될 것 같다는 생각이 납니다.
81이상의 9의 배수에서도 통할까요?
90 99 108 117 ....
99에서 벌써 18이 돼버리네요.
그런데 18도 9의 배수라는게 굉장히 특이하다고 느껴집니다.

이제부터는 수식을 이용하여 논해봅니다.
1~999까지 모든 수는
100a + 10b + c로 표현할 수 있습니다.
이렇게 표현하는 이유는 우리가 일의 자리수, 십의자리수등 '자릿수'에 관심이 있기 때문입니다.
100a + 10b + c가 9의 배수인지 판단하려면, 9로 묶어봐야겠습니다.

그 결과, 100a+10b+c 는 9(11a+b) + (a+b+c)로 묶이게 됩니다.
9(11a+b)는 9의 배수이므로
a+b+c 가 9의 배수이면, 100a+10b+c가 9의 배수가 되겠습니다..

즉, 각 자릿수의 합이 9의 배수이면, 원래 수가 9의 배수가 됩니다.
이제 3846296229처럼 복잡한 숫자가 나와도,
3+8+4+6+2+9+6+2+2+9=51
51이 9의 배수가 아니기 때문에
원래의 수가 9의 배수가 아니라고 판단할 수 있게 됩니다.

ㅡㅡㅡㅡㅡㅡㅡㅡ
이렇듯, '자릿수'를 집중하는 것을 통해
9의 배수판정법을 비롯한 다양한 배수판정법이 나오게 됩니다.
이에 대해서는 다음포스팅에서 다뤄보겠습니다!
감사합니다.
ryanhan이었습니다.

15

comments